

Tetrahedron Letters, Vol. 35, No. 45, pp. 8417-8420, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)01818-9

X-Ray Crystallographic Studies of a 1,3-Alternate-calix[4]arene-Na+ Complex. Is the Cation- π Interaction Operative between the Benzene Rings and Na+?

Atsushi Ikeda, Hirohisa Tsuzuki[†], and Seiji Shinkai^{*}

Department of Chemical Science & Technology, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan [†] Center of Advanced Instrumental Analysis, Kyushu University, Kasuga, Fukuoka 816, Japan

Abstract: The structure of a 1,3-alternate-calix[4]arene-Na⁺ complex was determined by X-ray crystallography for the first time. It showed that two well-preorganized oxygen bases (OCH₂C=O groups) contribute to the Na⁺-binding whereas two π -basic benzene rings, unlike those for the K⁺ complex, are not involved. The complex adopts a highly symmetrical structure, which is the origin of the facile "Na⁺-tunneling" across the 1,3-alternate-calix[4]arene cavity.

Tetrakis((ethoxycarbonyl)methoxy)calix[4]arene with a 1,3-alternate conformation (1,3-alternate-1) is an interesting molecule because of its unique structural charactreristics: for example, (i) a metal-binding site is composed of two "hard" oxygenic ligands and two "soft" π -basic benzene rings, (ii) there are such two binding-sites at the two sides of the calix[4]arene cavity, and (iii) the two binding-sites are linked with each other by a π -basic tunnel. The structural characteristics are reflected by the unique metal-binding properties: for example, (i) 1,3-alternate-1 forms a 1:1 1/Na⁺ complex as well as a 1:2 1/Na⁺ complex¹ and (ii) in the 1:1 complex Na⁺ vibrates between two metal-binding sites through the π -basic tunnel.^{2,3} In spite of these intriguing metal-binding properties, the metal-binding mechanism is not understood in detail. For example, $K_{1:1}$ for the formation of the 1:1 1/Na⁺ complex (10^{4.38} M⁻¹ in CDCl₃:CD₃OD = 1:1 v/v at -50 °C) is much greater than the $K_{1,2}$ for the formation of the 1:2 1/Na⁺ complex (10^{0.60} M⁻¹).¹ This may be due to the electrostatic repulsion between two Na⁺ ions or may be due to the first Na⁺-induced conformational change which is unfavorable to the second Na⁺-binding (*i.e.*, the allosteric effect observed for certain bis(crown ether) $s^{4,5}$). It is known that in the binding of K⁺ and Ag⁺ to 1,3-alternate-calix[4] arenes not only M⁺...O electrostatic interaction but also the M⁺---benzene cation- π interaction participates in the binding event,^{2,3} but it is still ambiguous if the similar cation- π interaction is operative in the binding of Na⁺. The fact that the $K_{1:1}$ for 1,3-alternate-1 (10^{4,10} M⁻¹ in THF at 30 °C) is greater than that for cone-1 (10^{3,95} M⁻¹)¹ may be related to the π -base participation in the 1,3-alternate-1-Na⁺ complex. We considered that these difficult problems can be solved only by the X-ray crystallographic study. Here, we address the first example for the X-ray structure of the 1,3-alternate-calix[4]arene-Na⁺ complex.⁶

Recrystallization of 1,3-alternate-1 and NaClO₄ (1:1 molar ratio) from chloroform-methanol gave colorless crystals. The elemental analysis⁷ established that the stoichiometry of the crystals is 1:1. The method for the X-ray crystallographic analysis is similar to those described previously.^{3,6} The crystal data are summarized in Table 1 and the X-ray structure is illustrated in Fig. 1.⁸

One can raise a number of interesting points about the X-ray structure. Firstly, Na⁺ interacts only with two OCH₂C=O groups but not with the benzene rings: that is, in the present system the π -bases do not participate in the Na⁺-binding. Then, why is the $K_{1:1}$ for 1,3-alternate-1.Na⁺ based on the interaction between Na⁺ and two OCH₂C=O groups greater than that for cone-1.Na⁺ based on the interaction between Na⁺ and four OCH₂C=O groups? In Table 2 we compare the dihedral angles (θ) between the mean plane of the four ArCH₂Ar methylene carbons and each benzene ring. The θ values for 1,3-alternate-3 (the structure is illustrated in Table 2) predicted by the MM3 computation⁹ are very close to 90°. In 1,3-alternate-2, on the other hand, the θ values are significantly smaller than 90°, indicating that the benzene rings are flattened to relax the steric crowding among O- and para-substituents. It is acceptable to consider that the θ values in metal-uncomplexed 1,3-alternate-1 should be similar to those in 1,3-alternate-2 because their structures are similar to each other. It is seen from Table 1 that although Ph_1 is a little more flattened than that in 1,3alternate-2, the residual three θ values are very similar to those in 1,3-alternate-2. This implies that in 1,3alternate-1 the distance between two OCH₂C=O groups is suitably "preorganized" to the Na⁺-binding. In cone-1, in constant, four OCH₂C=O groups must be significantly flattened upon Na⁺-binding.¹⁰ Hence, one can consider that the difference in the preorganization explains why 1,3-alternate-1 using only two OCH₂C=O groups possesses the $K_{1:1}$ greater than cone-1 using four OCH₂C=O groups. Since the first Na⁺-binding does not induce a serious conformational change, the relation of $K_{1:1} > K_{1:2}$ is attributable to the electrostatic repulsion but not to the allosteric effect.

Secondly, we have to discuss why K⁺ can enjoy the π -base participation³ while Na⁺ cannot. In the present system, the distances from Na⁺ to the para-carbons are 3.32 and 3.88. Å. Since the sum of the half thickness of the benzene π -electron cloud (1.70 Å) and the Na⁺ radius (1.16 Å) is 2.86 Å, Na⁺ cannot interact with the π -bases. On the other hand, the sum of the half thickness of the benzene π -electron cloud and the K⁺ radius (1.65 Å) is 3.35 Å. This value is large enough to interact with the π -bases around the para-carbons. Although the "softer" K⁺ may interact with the π -base more favorably than the "harder" Na⁺,¹¹ the Na⁺ / K⁺ difference in 1,3-alternate-1 is ascribed to the steric problem.

Fig. 1 X-Ray strucuture of the 1,3-alternate-1-NaClO₄ complex.

Table 1	Crystal	data
---------	---------	------

Empirical formation	C60H80ClNaO16	V/Å ³	6144.7(9)
Space group	$P2_1 / n$	Ζ	4
a / Å	21.546(2)	D_{calc} / g cm ⁻³	1.206
b / Å	20.057(2)	observed reflections	10979
c /Å	14.2618(6)	R	0.088
<u>β/°</u>	94.460(6)	R _w	0.115

Table 2 Comparison of the dihedral angles (θ)

	1,3-Alternate-1.Na+	1,3-Alternate-2	1,3-Alternate-3
	X-ray	X-ray	MM3
Ph ₁	-74.9	-86.5	-88.0
Ph ₂	78.2	79.6	87.8
Ph ₃	-75.5	-78.6	-87.9
Ph ₄	70.9	73.9	88.0

Thirdly, the ¹H NMR studies established that Na⁺ bound to 1,3-alternate-1 can enjoy the "metaltunneling" across the π -basic cavity.³ However, they did not tell us if the hopping of Na⁺ from one bindingsite to another binding-site accompanies the conformational change.¹ The X-ray structure in Fig. 1 and the dihedral angles in Table 2 show that 1,3-alternate-1 adopts a nearly symmetrical structure although Na⁺ is bound only to one binding-site. This means that the "metal-tunneling" can take place without accompanying the conformational change. We believe that the absence of the conformational change may facilitate the Na⁺tunneling in 1,3-alternate-1 Na⁺.

In conclusion, the present study is the first example for the X-ray structure determination of the conformationally-immobile 1,3-alternate-calix[4]arene-Na⁺ complex. The study has provide several clues to explain how Na⁺ is bound to the binding-site in 1,3-alternate-calix[4]arene and why Na⁺ can enjoy the "metal-tunneling". We believe that these lines of basic knowledge are useful to understand the relative contribution of the oxygen base and the π -base to the metal-binding and provide guiding principles for the design of π -basic ion channels,¹¹ calix[4]arene-based nano-tubes,¹² etc.

References

- 1 K. Iwamoto and S. Shinkai, J. Org. Chem., 57, 7066 (1992).
- 2 A. Ikeda and S. Shinkai, Tetrahedron Lett., 33, 7385 (1992).
- 3. A. Ikeda and S. Shinkai, J. Am. Chem. Soc., 116, 3102 (1994).
- 4. J. Bouquant, A. Delvile, J. Grandjean, and P. Laszlo, J. Am. Chem. Soc., 104, 686 (1982).
- 5 J. Rebek, Jr., R. V. Wattley, T. Costello, R. Gadwood, and L. Marshall, J. Am. Chem. Soc., 102, 7393 (1980).
- 6 There are three examples for the X-ray structure determination of metal-uncomplexed 1,3-alternatecalix[4]arenes: K. Fujimoto, N. Nishiyama, H. Tsuzuki, and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1992, 643; W. Verboom, S. Datta, Z. Asfari, S. Harkema, and D. N. Reinhoudt, J. Org Chem., 57, 5394 (1992); E. Ghidini, F. Ugozzoli, R. Ungaro, S. Harkema, A. A. El-Fadl, and D. N. Reinhoudt, J. Am. Chem. Soc., 112, 6979 (1990). On the other hand, conformationally-mobile 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetramethoxycalix[4]arene forms a complex with EtAlCl₂ to give the 1,3-alternate conformer: S. G. Bott, A. W. Coleman, and J. L. Atwood, J. Incl. Phenom., 5, 747 (1987).
- 7. Anal. Calcd for C₆₀H₈₀O₁₂·NaClO₄: C, 64.59; H, 7.23%. Found: C, 63.71; H, 7.24%.
- 8. Detailed X-ray crystallographic data are available from Cambridge Crystallographic Data Centre.
- 9. T. Harada, J. M. Rudzinski, and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1992, 2109.
- A. Yamada, T. Murase, K. Kikukawa, T. Arimura, and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1991, 793.
- 11. R. A. Kumpf and D. A. Dougherty, Science, 261, 1708 (1993).
- 12. A. Ikeda and S. Shinkai, to be submitted.

(Received in Japan 27 June 1994; accepted 27 August 1994)