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Abstmck The structure of a 1.3~altemate-calix[4]arene~Na+ complex was determined by X-ray 
crystallography for the first time. It showed that two well-preorganimd oxygen bases (OCH+O 
groups) contribute to the Na+-binding whereas two x-basic benzene rings, unliie those for the K+ 
complex, ate not involved. The complex adopts a highly symmetrical structure, which is the 
origin of the facile “Na+-tunnebng” across the 1.3~alternate-Cal ~x[rl]arene cavity. 

Tetrakis((ethoxycarbonyl)mcthoxy)calixt4larene with a 1,3-alternate conformation (1.3~alternate-l) is 

an interesting molecule because of its unique structural charactreristics: for example. (i) a metal-binding site is 

composed of two “hard” oxygenic ligands and two “soft” n-basic benzene rings, (ii) there are such two 

binding-sites at the two sides of the catix[4]arene cavity, and (iii) the two binding-sites ate linked with each 
other by a x-basic tunnel. The structural characteristics are reflected by the unique metal-binding properties: 

for example, (i) 1,3-alternate-l forms a 1: 1 l/Na+ complex as well as a 1:2 l/Na+ complext and (ii) in the 1: 1 
complex Na+ vibrates between two metal-binding sites through the x-basic tunnel.~~~ In spite of these 

intriguing metal-binding pmperties. the metakbinding mechanism is not un&mood in detail. For example, 

Kt:t for the formation of the I:1 l/Na+ complex (104.38 M-t in CDCl3CD30D = 1~1 v/v at -50 “C) is much 
greater than the Kt:2 for the formation of the 1~2 l/Na+ complex (l@a M-t).t This may be due to the 

electrostatic repulsion between two Na+ ions or may be due to the first Na+-induced conformational change 

which is unfavorable to the second Na+-binding (i.e., the allosteric effect observed for certain bis(crown 

ether)&). It is known that in the binding of K+ and Ag+ to 1,3-altemate-calix[4]arenes not only M+u~ 
electrostatic interaction but also the M+-benzene cation-x interaction participates in the binding even&3 but 

it is still ambiguous if the similar cat&n-rr interaction is operative in the hnding of Na+. The fact that rhe Kt :t 

for 13-alternate--1 (lOr-1° M-l in THF at 30 “C) is m than that for cone-l (103.95 M-*)1 may be related to 

the n-base participation in the 1.3~al&mate-l+Na+ complex. We considered that these difficult problems can 

be solved only by the X-ray crystallographic study. Here, we address the first example for the X-ray structure 

of the 1.3~alternate-calix[4]areneeNa+ complex.6 
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n-Base participation 
in 1,3-alte&-calix~4]arene-metal 

1.3~Alternate-1 complexes 

Recrystallization of 1,3-alternate-l and NaCIO4 (1:1 molar ratio) from chloroform-methanol gave 

colorless crystals. The elemental analysis7 established that the stoichiometry of the crystals is 1: 1. The 

method for the X-ray crystallographic analysis is similar to those described pmviousjy.3~6 The crystal data am 

smnmarized in Table 1 and the X-my structure is illustrated in Pig. I.8 

One can raise a number of interesting points about the X-ray structure. Firstly, Na+ interacts only with 

two OCHzC=O groups but not with the benzene rings: that is, in the present system the rt-bases do not 

participate in the Na+-binding. Then, why is the Kr : 1 for 1,3-alternate-l-Na* hased on the interaction between 

Na+ and two OCH2C=O groups greater than that for cone-l*Na+ based on the interaction between Na+ and 

four OCH+=O groups? In Table 2 we compare the dihedral angles (8) between the mean plane of the four 

ArCH2Ar methylene carbons and each benzene ring. The 6 values for 1.3~alternate-3 (the structure is 

illustrated in Table 2) predicted by the MM3 computationg are very close to 90”. In 1.3~altematc-2, on the 
other hand, the 8 values are significantly smaller than 90v, indicating that the benzene rings are flattened to 

relax tire stcric crowding among O- and para-substituents. It is acceptable to consider that the 8 values in 

metal-uncomplexed 1,3-alternate-l should be similar to those in 1,3-alternate-2 because their structures am 

similar to each other. It is seen from Table 1 that although Phi is a little more flattened than that in 1,3- 

alternate-2, the residual three 8 values are very similar to those in 1,3-alternate-2. This implies that in 1.3- 

alternate-l the distance between two OCH$=O groups is suitabIy “preorganized” to the Na+-binding. In 

cone-l, in constant. four OCH2C=Q groups must be significantly flattened upon Na+-binding.19 Hence, one 

can consider that the difference in the preorganization explains why 1,3-alternate-l using only two OCH$%O 

groups possesses the Kr:l greater than cone-l using four OCH+O groups. Since the first Na+-binding does 

not induce a serious conformational change, the relation of Kp1 > K1:2 is attributable to the electrostatic 

repulsion but not to the allosteric effect. 

Secondly, we have to discuss why K+ can enjoy the n-base participation3 while Na+ cannot. In the 

present system, the distances from Na+ to the para-carbons are 3.32 and 3.88. A. Since the sum of the half 

thickness of the benzene x-electron cloud (1.70 A> and the Na+ radius ( 1.16 A) is 2.86 A, Nay cannot interact 

with the zMases. On the other hand, the sum of the half thickness of the benzene n-electron cloud and the K+ 

radius (1.65 A) is 3.35 A. This value is large enough to interact with the n-bases around the para-carbons. 

Although the “softer” K+ may interact with the n-base more favorably than the “harder” Na+,* 1 the Na+ / K+ 

difference in 1.3~alternate-1 is ascribed to the steric problem. 
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Fig. 1 X-Ray strucuture of the 1,3-alternate-l*NaClOq complex. 

Table 1 Crystal data 

Empirical formation 

space group 

a /A 

b/A 

c /A 

PI” 

Cd8&1Na0 16 

P21/n 

21.546(2) 

20.057(2) 

14.26 18(6) 

94.460@) 

v/A3 6144.7(9) 

:z 4 

L&k I g cm3 1.206 

observed reflections 10979 

R 0.088 

Table 2 Comparison of the dihedral angles (@ 

1.3-Al&mate-1.Na+ 

x-ray 

Phi -74.9 

Phz 78.2 

Pfis -75.5 

Ph4 70.9 

1 ,J-Alternate-2 1.3-Alternate-3 

x-ray MM3 

-86.5 -88.0 

79.6 87.8 

-78.6 -87.9 

73.9 88.0 

1.3-Alternate-l-Na+ complex 1.3~Ahmate- 
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Thirdly, the t H NMR studies established that Na+ bound to 1,3-alternate-l can enjoy the “metal- 
tunneling” across the n-basic cavity. 3 However, they did not tell us if the hopping of Na+ from one binding- 

site to another binding-site aeeompanies the conformational change.1 The X-ray structure in Fig. 1 and the 

dihedral angles in Table 2 show that 1,3-alternate-l adopts a nearly symmetrical structure although Na+ is 

bound only to one binding-site. This means that the “metal-tunneling” can take place without accompanying 

the conformational change. We t&eve that the absence of the conformational change may facilitate the Na+- 

tunneling in 1.3~alternate-l*Na+. 

In conclusion, the present study is the first example for the X-ray structure determination of the 

conformationally-immobile 1.3~r&mate-csJix[4]sxene-Na+ complex. The study has provide several clues to 

explain how Na+ is bound to the binding-site in 1.3~ahemate-cahx[4]arene and why Na+ can enjoy the “metal- 

tunneling”. We believe that these lines of bssic knowledge are useful to understand the relative contribution 

of the oxygen base and the x-base to the metal-binding and provide guiding principles for the design of A- 

basic ion chanr&,tt calix[4larene-based nano-tubes,i2 etc. 
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